指数函数的运算公式
1、
2、
3、
4、
指数函数的一般形式为
(a>0且≠1) (x∈R),要想使得x能够取整个实数集合为定义域,则只有使得a>0且a≠1。
对数函数的运算公式
换底公式
指系
互换
倒数
链式
通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。,在科学计数中常使用以无理数e=2.71828···为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把logeN 记为In N。
扩展资料
同底的对数函数与指数函数互为反函数。
当a>0且a≠1时,ax=N。
x=㏒aN。
关于y=x对称。
对数函数的一般形式为 y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。
指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0
可以看到,对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
参考资料来源