向量的加法口诀首尾相连,首连尾,方向指向末向量。向量的减法口诀首首相连,尾连尾,方向指向被减向量。

三角形定则解决向量加减的方法
将各个向量依次首尾顺次相接,结果为第一个向量的起点指向一个向量的终点。
注两个向量相减,则表示两个向量起点的字母必须相同;差向量的终点指向被减向量的终点。
平行四边形定则解决向量加法的方法
将两个向量平移至公共起点,以向量的两条边作平行四边形,结果为公共起点的对角线。
平行四边形定则解决向量减法的方法
将两个向量平移至公共起点,以向量的两条边作平行四边形,结果由减向量的终点指向被减向量的终点。
(平行四边形定则只适用于两个非零非共线向量的加减。)
注当两个向量首尾相连时常选用三角形法则,当两个向量共始点时常选用平行四边形法则。
坐标系解向量加减法
在直角坐标系里面,定义原点为向量的起点.两个向量和与差的坐标分别等于这两个向量相应坐标的和与差若向量的表示为(x,y)形式,
A(X1,Y1)B(X2,Y2),则A+B=(X1+X2,Y1+Y2),A-B=(X1-X2,Y1-Y2)
简单地讲向量的加减就是向量对应分量的加减。类似于物理的正交分解。